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a b s t r a c t

Three-way Candecomp/Parafac (CP) is a three-way generalization of principal component
analysis (PCA) for matrices. Contrary to PCA, a CP decomposition is rotationally unique
under mild conditions. However, a CP analysis may be hampered by the non-existence
of a best-fitting CP decomposition with R ≥ 2 components. In this case, fitting CP to a
three-way data array results in diverging CP components. Recently, it has been shown
that this can be solved by fitting a decomposition with several interaction terms, using
initial values obtained from the diverging CP decomposition. The new decomposition
is called CPlimit, since it is the limit of the diverging CP decomposition. The practical
merits of this procedure are demonstrated for a well-known three-way dataset of TV-
ratings. CPlimit finds main components with the same interpretation as Tucker models
or when imposing orthogonality in CP. However, CPlimit has higher joint fit of the main
components than Tucker models, contains only one small interaction term, and does not
impose the unnatural constraint of orthogonality. The uniqueness properties of the CPlimit
decomposition are discussed in detail.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Three-way data and the CP decomposition

Three-way data are data that can be arranged in a three-dimensional array or three-way array. Such data is found inmany
different contexts. For example: scores on various anxiety scales of a number of individuals in various situations; scores on
various competences of a number of workers by several different assessors; scores on food quality indicators of a number of
food products by several different judges; and a number of consecutive fMRI measurements for different areas of the brain
for different individuals. The three sets of entities associatedwith three-way datasets are called the threemodes of the array.

We denote a three-way array as Z and its entries as zijk, where the subscripts correspond to row i, column j, and frontal
slice k. An I × J × K array Z has frontal slices Zk of size I × J . Entry zijk is entry (i, j) of matrix Zk.

In this paper, we consider the three-way Candecomp/Parafac (CP) decomposition of a three-way arrayZ. The CPmodel is:

Z =

R
r=1

gr (ar ◦ br ◦ cr) + E, (1)

∗ Tel.: +31 50 363 6193; fax: +31 50 363 6304.
E-mail address: a.w.stegeman@rug.nl.
URL: http://www.gmw.rug.nl/∼stegeman.

http://dx.doi.org/10.1016/j.csda.2014.02.010
0167-9473/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.csda.2014.02.010
http://www.elsevier.com/locate/csda
http://www.elsevier.com/locate/csda
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csda.2014.02.010&domain=pdf
mailto:a.w.stegeman@rug.nl
http://www.gmw.rug.nl/~stegeman
http://www.gmw.rug.nl/~stegeman
http://www.gmw.rug.nl/~stegeman
http://www.gmw.rug.nl/~stegeman
http://www.gmw.rug.nl/~stegeman
http://www.gmw.rug.nl/~stegeman
http://dx.doi.org/10.1016/j.csda.2014.02.010


204 A. Stegeman / Computational Statistics and Data Analysis 75 (2014) 203–216

Fig. 1. Graphical representation of the CP model.

where ◦ denotes the outer vector product. For column vectors a and b, thematrix a◦b = abT has (i, j) entry aibj. For column
vectors a, b, and c, the three-way array a ◦ b ◦ c has (i, j, k) entry aibjck. The rank of Z is defined as the minimal R for which
Z satisfies (1) with all zero residual array E . A three-way array has rank 1 if it is of the form a ◦ b ◦ c for nonzero vectors
a, b, c. A graphical representation of the CP model is depicted in Fig. 1.

The vectors ar , br , and cr in (1) are assumed to have a fixed length, i.e., aTr ar = la, bT
r br = lb, and cTr cr = lc for fixed

positive numbers la, lb, lc . The weights gr in (1) are assumed to be positive. We write a CP decomposition as (A, B, C, g),
where A = [a1 | . . . | aR], B = [b1 | . . . | bR], C = [c1 | . . . | cR], and gT

= (g1 . . . gR)T . For a fixed number
R of components, a best-fitting CP decomposition is found by an iterative CP algorithm that tries to minimize the sum-of-
squares of the residual array E . For an overview and comparison of CP algorithms see e.g. Tomasi and Bro (2006), and Comon
et al. (2009). Fitting a CP decomposition to Z is equivalent to finding a best rank-R approximation to Z.

The CPmodelwas proposed independently byCarroll andChang (1970) andHarshman (1970) as amethod for exploratory
component analysis ofmulti-way arrays. However, its origins inmathematics date back to Hitchcock (1927a,b).We consider
the real-valued CP model, i.e., we assume the data array Z and the component matrices A, B, C to be real-valued. The real-
valued CPmodel is used in psychology and chemistry; see Harshman and Lundy (1994), Siciliano andMooijaart (1997), Kiers
and Van Mechelen (2001), Kroonenberg (2008), and Smilde et al. (2004). Complex-valued applications of CP occur in signal
processing and telecommunications research; see e.g. Sidiropoulos et al. (2000a,b), and De Lathauwer and Castaing (2007).
Here, the decompositions aremostly used to separate signal sources froman observedmixture of signals. A general overview
of applications of CP and related decompositions can be found in Kolda and Bader (2009) and Acar and Yener (2009).

A matrix form of the CP model is:

Zk = A Ck GBT
+ Ek, k = 1, . . . , K , (2)

where Ck is the R × R diagonal matrix with row k of C as diagonal, G is the diagonal matrix with g as diagonal, and Ek is
frontal slice k of array E . For K = 1, the model has the same form as principal component analysis (PCA).

For an individual entry of Z, the CP model is written as

zijk =

R
r=1

gr airbjrckr + eijk. (3)

For later use, we introduce the following more general component model for three-way arrays due to Tucker (1966):

Z =

R
r=1

P
p=1

Q
q=1

grpq (ar ◦ bp ◦ cq) + E . (4)

The Tucker model (4) reduces to the CP model (1) if the weights grpq are zero for (r, p, q) ≠ (r, r, r). We will refer to terms
with (r, p, q) ≠ (r, r, r) as interaction terms. For an individual entry zijk, the Tucker model is written as

zijk =

R
r=1

P
p=1

Q
q=1

grpq airbjpckq + eijk. (5)

The most attractive feature of CP is that, for fixed residuals, the decomposition is unique up to permutation and scaling
under mild conditions. That is, the only alternative CP decompositions yielding the same fitted array are obtained by
permuting the R terms in (1) or by rescaling and counterscaling the vectors within each term (ar ◦ b ◦ cr). Sufficient
uniqueness conditions for three-way CP can be found in Domanov and De Lathauwer (2013a,b) and the references therein.
This uniqueness property does not hold for the Tucker model (4), nor for PCA.

1.2. Diverging CP components

A potential problem in the application of CP is that a best-fitting CP model does not exist for every data array Z (De
Silva and Lim, 2008). In that case, trying to fit CP yields several (groups of) diverging components. In a group of diverging
components, the corresponding columns in A, B, and C become nearly linearly dependent and the corresponding weights
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gr become arbitrarily large as the CP algorithm keeps running (Krijnen et al., 2008). However, the sum of the diverging
components remains relatively small and contributes to a better fit of the CP model. Early conjectures of non-existence of
a best-fitting CP model as the cause of diverging components appeared in Kruskal et al. (1989). In practice, the presence of
diverging component also results in very slow convergence of the CP algorithm.

In almost all observed cases of diverging components, the columns of A, B, C in the same group of diverging components
becomenearly equal up to sign (Stegeman andDe Lathauwer, 2011). Hence, the contributions of somediverging components
are nearly cancelled out by the contributions of other diverging components. For example, for a group of two diverging
components s and t we may have as ≈ at , bs ≈ −bt , cs ≈ ct , and gs ≈ gt , where gs and gt are considerably large in
magnitude. For examples of groups of more than two diverging components, or more groups of diverging components, see
Stegeman (2006, 2012).

Unfortunately, there are only few general results indicating for which data array Z there is and is not a best-fitting CP
model with R components. We know that the case R = 1 always has a best-fitting CP model, and that 2 × 2 × 2 arrays of
rank 3 have no best-fitting CP model with R = 2 (De Silva and Lim, 2008). Stegeman (2008, 2013b) proves the existence
or non-existence of best-fitting CP models for generic I × J × 2 arrays, for all values of I, J, R. Stegeman (2006) describes
how diverging components occur for I × I × 2 arrays in case no best-fitting CP model exists. Stegeman (2007) extends this
approach to several I × J × 3 arrays.

Diverging components cannot be interpreted and may thus be a serious problem in the practical use of CP. In simulation
studies with randomly sampled data Z (from a continuous distribution), diverging components occur very often, with
percentages of up to 50, 60, or even 100 (Stegeman, 2006, 2007, 2008, 2012, 2013a).

Diverging components can be avoided by imposing constraints in CP such that a best-fitting CP model exists. Examples
are: orthogonality constraints on the columns of (one or more of) A, B, C (Harshman and Lundy, 1984; Krijnen et al.,
2008), nonnegativity constraints on A, B, Cwhen the data array is nonnegative (Lim and Comon, 2009), or constraining the
magnitude of the inner products between pairs of columns of A, B, C (Lim and Comon, 2010). However, these constraints
are not suitable for all applications of CP.

A different approach to deal with diverging components is as follows. Let Y(n) denote the array formed by the CP
decomposition (A(n), B(n), C(n), g(n)) after the n-th iteration of a CP algorithm. For data Z of rank larger than R, the array
Y(n) will converge to the boundary of the set of I × J × K arrays with rank at most R (i.e., a perfect fitting CP decomposition
with R components). Indeed, if a CP algorithm is designed to minimize the sum-of-squares difference between Y(n) and Z,
then Y(n) will move from within the set of rank-R arrays to a boundary point X of that set. We call X an optimal boundary
point if it has minimal sum-of-squares difference with Z, for all boundary points of the rank-R set. If there is no optimal
boundary point X with rank less than or equal to R, then there is no best-fitting CP model for Z. In that case, the rank-
R sequence Y(n) converges to a limit X with rank larger than R and will feature diverging components. The approach we
consider in this paper tries to find the limit X and its nondiverging decomposition, which has some interaction terms as in
(4). We call this decomposition of X the CPlimit decomposition.

Note that diverging components occur whenever Y(n) converges to a limit X with rank larger than R. In the sequel, we
assume that X is an optimal boundary point with rank larger than R, and that no optimal boundary points exist with rank
less than or equal to R. If the latter is not true, then a best-fitting CP model does exist and the diverging components can be
avoided by choosing suitable initial values for the CP algorithm (Paatero, 2000; Stegeman, 2009).

1.3. Outline of the paper

In this paper, we discuss recently proposed algorithms to find the optimal boundary point X and its nondiverging CPlimit
decomposition. Algorithms to find X directly, whether it has rank R or larger, exist only for R = 2 (Rocci and Giordani,
2010), and for I× J×2 arrays (Stegeman and De Lathauwer, 2009; Stegeman, 2010). These algorithms are fast and diverging
components do not occur. For R ≥ 3 and I × J × K arrays with min(I, J, K) ≥ 3 such algorithms have not been found. As
an alternative, Stegeman (2012, 2013a) proposes the following approach. Suppose trying to find a best-fitting CP model for
Z results in diverging components and one is convinced that no best-fitting CP model exists. Then the form of the CPlimit
decomposition of the limit X can be determined from the number of groups of diverging components in the CP sequence
Y(n), and the numbers of diverging components in each group. That is, in each case, the form of the CPlimit decomposition
is dictated by the mathematical results of Stegeman (2012, 2013a). The nondiverging CPlimit decomposition of X can be
found by fitting this form of decomposition to Z, using initial values obtained from the CP sequence Y(n). A more detailed
discussion of this approach follows in Section 2.

In Section 3, we apply this method to a previously analyzed dataset of TV-ratings, for which one group of two diverging
components occurs when trying to fit CP with R = 3 (Lundy et al., 1989; Harshman, 2004). The method yields a CPlimit
decomposition of X that contains three main components. Their interpretation is the same as the components found by CP
with an orthogonality constraint, various Tucker decompositions, and the analysis of Lundy et al. (1989).We explain in detail
why the CPlimit solution is to be preferred to the solutions of the other models. This is the first application of the approach
of Stegeman (2012, 2013a) to a real-life dataset.

In Section 4, we study in detail the uniqueness properties of the CPlimit decomposition of X, which is not a CP
decomposition. We show that the CPlimit decomposition allows some more transformational freedom than CP, which can
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be fixed by using standard rotation criteria. For the TV-ratings data, this does not affect the interpretation of the solution
obtained in Section 3. Finally, in Section 5, we provide a discussion of our findings.

A CPlimit decomposition contains only few more terms than the corresponding CP decomposition. As we explain in
Section 2,when only groups of twodiverging components are present, the CPlimit decomposition is the smallest nondiverging
decompositionwith R components in eachmode. Therefore, CPlimit it is easier to interpret than a Tucker decomposition. Also,
the uniqueness properties of CPlimit are more attractive than the complete non-uniqueness of Tucker. The CPlimit approach
is a good alternative when imposing constraints in CP (to avoid diverging components) is not appropriate.

2. The optimal boundary point and its decomposition

Here, we discuss the approach of Stegeman (2012, 2013a) in more detail. First, however, we introduce some notation. A
three-way array may be multiplied by a matrix in one of its modes. The multiplication of I × J × K array Y by matrices S
(I2 × I), T (J2 × J), and U (K2 × K ), is denoted as Y2 = (S, T,U) · Y. The result of the multiplication is an I2 × J2 × K2 array
Y2 with entries

y(2)
ijk =

I
r=1

J
p=1

K
q=1

sir tjp ukq yrpq, (6)

where sir , tjp, and ukq are entries of S, T, andU, respectively. Note thatmultiplication of a three-way array by vectors is defined
in the same way. In that case, some or all of I2, J2, K2 are equal to 1.

Using this notation, the Tucker model (4) can be written as (A, B, C) · G, where the R × P × Q array G has entries grpq.
Array G is known as the core array. Analogously, the CP decomposition

R
r=1 gr (ar ◦br ◦ cr) can be written as (A, B, C) ·DR,

where DR is the R × R × R array with entries drrr = gr and zeros elsewhere. Hence, DR is a three-way generalization of a
diagonal matrix.

Recall thatwe are interested in a nondiverging CPlimit decomposition of the limitX of a rank-R CP sequenceY(n) featuring
diverging components. Here, the limit X has rank larger than R. For R = 2, it has been shown by De Silva and Lim (2008)
that X has rank 3, and a decomposition exists of the form X = (S, T,U) · G, with

G =


g111 0 0 g122
0 g221 0 0


, (7)

where the 2 × 2 frontal slices of G are given side by side. The CPlimit decomposition X = (S, T,U) · G can be written as

X = g111 (s1 ◦ t1 ◦ u1) + g221 (s2 ◦ t2 ◦ u1) + g122 (s1 ◦ t2 ◦ u2). (8)

Hence, instead of the two terms in CP we now have three terms, two of which are interaction terms. For R = 2, the limit X
and its CPlimit decomposition can be found directly (i.e., without first running a CP algorithm); see Rocci and Giordani (2010).

For R = 3 and a group of three diverging components (with corresponding columns of A, B, C nearly identical up to sign),
the form of the CPlimit decomposition can be found in Stegeman (2012). For R = 4 and a group of four diverging components
(with corresponding columns of A, B, C nearly identical up to sign), see Stegeman (2013a). Recall that cases with diverging
components that are not identical up to sign have been constructed but are exceptional (Stegeman andDe Lathauwer, 2011).
Also, cases with groups of more than four diverging components have been found in simulation studies, but are very rare in
practice.

When not all components are diverging, or multiple groups of diverging components occur, Stegeman (2012, 2013a)
proposes the following CPlimit decomposition of X. Each group of dj diverging components converges to its own limit Xj
with its CPlimit decomposition Xj = (Sj, Tj,Uj) · Gj, where Gj has size dj × dj × dj. For dj ∈ {2, 3, 4} the form of the
CPlimit decomposition of Xj is known, as explained above. Each nondiverging component stays nondiverging in the limit,
and corresponds to a dj = 1. For example, suppose R = 3 and we have one group of two diverging components. The limit
X then has CPlimit decomposition X = X1 + X2, where X1 = (S1, T1,U1) · G1 with G1 as in (7) being the limit of the
two diverging components, and X2 = g3 (s3 ◦ t3 ◦ u3) being the limit of the nondiverging component. Hence, the CPlimit
decomposition of X is of the form

X = g111 (s1 ◦ t1 ◦ u1) + g221 (s2 ◦ t2 ◦ u1) + g122 (s1 ◦ t2 ◦ u2) + g3 (s3 ◦ t3 ◦ u3). (9)

The assumption of Stegeman (2012, 2013a) that groups of diverging components each converge to their respective limits,
is confirmed by simulation studies. The limit X and its CPlimit decomposition X =

m
j=1 Xj =

m
j=1(Sj, Tj,Uj) · Gj may be

obtained by fitting the appropriate decomposition form to the data Z. For this, the alternating least squares algorithm of
Kiers and Smilde (1998) for fitting a constrained Tucker model can be used. In this algorithm, each of A, B, C, and the core
G is estimated by solving a regression, while keeping the others fixed. The regression to estimate the core G features only
the unconstrained core entries. Initial values for this algorithm can be obtained from the CP decomposition of Y(n), which
features diverging components. Matlab codes are available online for finding the correct form of CPlimit, obtaining initial
values, and fitting it to a dataset that yields diverging CP components; see http://www.gmw.rug.nl/~stegeman. For more
details, we refer to Stegeman (2012, 2013a).

http://www.gmw.rug.nl/~stegeman
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In our application in Section 3 we have R = 3 and two diverging components and we fit the CPlimit decomposition
(9) to the data Z. The CPlimit decomposition has four terms and is the smallest nondiverging Tucker decomposition with a
constrained 3 × 3 × 3 core. Indeed, the simplest 3 × 3 × 3 core has three nonzeros and corresponds to CP with R = 3
(which cannot be fit due to diverging components). Concerning the part of the two diverging components, we can reason as
follows. Imposing a Tucker model with 2 × 2 × 2 core of rank 2 is not feasible. A generic rank-2 core can be transformed to
a simple form with two nonzeros and corresponds to CP with R = 2 (De Silva and Lim, 2008). The complete model is then
again CP with R = 3 and yields diverging components. For a 2 × 2 × 2 core of rank 3, we have two possibilities. First, the
2 × 2 × 2 rank-3 core lies on the boundary between rank-2 and rank-3 arrays, and can be transformed to simple form (7)
(De Silva and Lim, 2008). We obtain the CPlimit decomposition (9). Alternatively, the 2 × 2 × 2 rank-3 core is generic and
can be transformed to simple formwith four nonzeros (De Silva and Lim, 2008). This yields a decomposition with one more
term than CPlimit. Hence, for the part of the two diverging components, the first three terms of CPlimit in (9) represent the
smallest nondiverging Tucker decomposition with a constrained 2 × 2 × 2 core.

Since the CPlimit decomposition of X is not of CP form, one may wonder what its uniqueness properties are. This has
been studied in Stegeman (2012) for limits of groups of two diverging components. In the example above, the order of X1
and X2 may of course be reversed. As shown in Stegeman (2012), there are also transformations possible within the CPlimit
decomposition of X1. Namely, there exist 2× 2 matrices L,M,N such that (L,M,N) · H1 = G1, with G1 and H1 of the form
(7). However, the separation of the limit X into the limits X1 and X2 is unique. In Section 4, we will study in more detail
the transformations (L,M,N) · H1 = G1.

3. Application to TV-ratings data

Here,wepresent a three-way component analysis of TV-ratings data. The data consists of ratings of 15American TV shows
on 16 rating scales, made by 40 subjects in 1981. The subjects were introductory psychology students at the University of
Western Ontario, Canada, who were familiar with the shows. The data are previously analyzed by Lundy et al. (1989) and
also feature in Harshman (2004). Next, we describe the data, which is given as rating scales (mode 1) by TV shows (mode
2) by persons (mode 3). The rating scales and TV shows are given in Table 1. The possible scores on the rating scales are
−6, −5, . . . ,−1, 0, 1, . . . , 5, 6. After deleting subjects with missing data, 30 persons (mode 3) are kept.

The result of a CP analysis of this 16 × 15 × 30 array Z will be R components for the TV shows in the columns of B
(15 × R), loadings of the rating scales on each component in the columns of A (16 × R), and loadings of the persons on each
component in the columns of C (30× R). Additionally, each component r has a weight gr ; see (1). The loading of rating scale
i and person k on component r is then given by the product gr airckr . We scale the CP decomposition (A, B, C, g) such that
aTr ar = 16, bT

r br = 15, and cTr cr = 4. Hence, the mean squared component score in br equals 1, the mean squared rating
scale loading in ar also equals 1, and the sum of squared person loadings in cr equals 4. Furthermore, whenever possible, we
apply sign changes to the columns of A, B, C such that C does not contain negative loadings. Unless specified otherwise, the
person loadings in C are positive.

The result of a Tucker analysis ofZ is given analogously bymatrices A, B, C (nowwith R, P,Q columns, respectively) and
an R × P × Q core array G; see (4). We apply the same scaling to A, B, C as in CP.

Like PCA, the CP and Tucker decompositions are multiplicative in nature. Hence, the data needs to be centered and
possibly scaled prior to analysis. This is called preprocessing. For a detailed discussion of (three-way) preprocessing we
refer to Bro and Smilde (2003), and Kiers (2006). A three-way array can be centered across one, two, or three modes. For
example, centering across the first mode (zijk − z•jk) removes offset terms depending only on j or k. A three-way array can
be scaled within one mode only. For example, scaling within the third mode (zijk/σk) can be used to set the variance of each
frontal slice to 1. In the CP decomposition of Z, centering across the first mode centers the columns of A, and scaling within
the third mode scales the rows of C.

The exact preprocessing used by Lundy et al. (1989) is not reported. However, for ratings data Harshman and De Sarbo
(1984) recommend centering across rating scales and stimuli, and standardizing within rating scales and subjects. The
latter is done iteratively and approximately. Accordingly, we use centering across rating scales and TV shows to remove
all one-way main effects. We standardize within the persons mode to remove differences between extreme and moderate
response styles. Our CP solutions have close resemblance to those obtained by Lundy et al. (1989), which indicates that our
preprocessing closely resembles theirs.

3.1. Choosing an appropriate three-way component model

In Lundy et al. (1989) and Harshman (2004) only the CP analysis of the TV-ratings data is considered. Here, we take a step
back and first discuss which Tucker or CP models might be suitable for this dataset. Various methods have been proposed
for choosing the number(s) of components in Tucker and CP models. They compare fit percentages and numbers of free
parameters in the models (e.g. Ceulemans and Kiers, 2006). The fit percentage for any three-way model is defined as

100 − 100
ssq(E)

ssq(Z)
, (10)
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Table 1
Rating scales and TV shows in the TV-ratings dataset.

Rating scales TV shows

1. Thrilling . . .Boring 1. Mash
2. Intelligent . . . Idiotic 2. Charlie’s Angels
3. Erotic . . .Not Erotic 3. All in the Family
4. Sensitive . . . Insensitive 4. 60 Minutes
5. Interesting . . .Uninteresting 5. The Tonight Show
6. Fast . . . Slow 6. Let us Make a Deal
7. Intellectually Stimulating . . . Intellectually Dull 7. The Waltons
8. Violent . . . Peaceful 8. Saturday Night Live
9. Caring . . .Callous 9. News (any channel; national edition)
10. Satirical . . .Not Satirical 10. Kojak
11. Informative . . .Uninformative 11. Mork and Mindy
12. Touching . . . ‘‘Leaves Me Cold’’ 12. Jacques Cousteau
13. Deep . . . Shallow 13. Football
14. Tasteful . . .Crude 14. Little House on the Prairie
15. Real . . . Fantasy 15. Wild Kingdom
16. Funny . . .Not Funny

Table 2
Fit percentages for various Tucker and CP models fitted to the TV-ratings data.

R × P × Q fit % R × P × Q fit % R × P × Q fit %

1 × 2 × 2 30.06 2 × 3 × 3 43.65 3 × 3 × 4 51.88
2 × 1 × 2 29.52 3 × 2 × 3 43.59 3 × 4 × 4 52.82
2 × 2 × 1 41.05 3 × 3 × 1 48.32 4 × 3 × 4 52.58
2 × 2 × 2 41.96 3 × 3 × 2 50.20 4 × 4 × 1 50.26
CP with R = 2 41.96 3 × 3 × 3 51.16 4 × 4 × 2 52.28
3 × 2 × 2 42.69 CP with R = 3 50.76 4 × 4 × 3 53.43
2 × 3 × 2 42.73 4 × 3 × 3 51.65 4 × 4 × 4 54.51
2 × 2 × 3 42.66 3 × 4 × 3 51.83 CP with R = 4 53.79

where E denotes the residual array, and ssq(·) denotes the sum-of-squares. In Table 2 the fit percentages for various Tucker
and CP models are reported.

Since the number(s) of components in Table 2 are relatively small, we do not use a formal method to choose an
appropriate model. As can be seen, the fit percentage increases with a relatively large amount when the numbers of
components in the rating scales and TV show modes increase simultaneously. This increase of fit occurs up to three
components and is much less when going to four components. In contrast, the fit does not increase much when the
number of components in the person mode is increased. Also, we observe that the fit of the CP model is rather close to
the fit of the Tucker model with (R, R, R) components. Based on these considerations, we select the Tucker models with
(3, 3, 1), (3, 3, 2), (3, 3, 3) components and the CP model with R = 3 components as suitable models for the TV-ratings
data. The fit percentages of these models are around 50%, which is acceptable.

For later use, we define the congruence coefficient between two three-way components (i.e., rank-1 terms in a CP
or Tucker decomposition). For any two components, we use the congruence coefficient to define their closeness. The
congruence coefficient of vectors a1 and a2 is defined as

ccA(1, 2) =
aT1a2

√
ssq(a1)

√
ssq(a2)

, (11)

which is between −1 and 1 (Tucker, 1951). We define the congruence coefficient between components (a1 ◦ b1 ◦ c1) and
(a2 ◦ b2 ◦ c2) as

cc(1, 2) = ccA(1, 2) ccB(1, 2) ccC (1, 2), (12)

where ccB(1, 2) and ccC (1, 2) are defined analogous to (11). The two components are nearly identical up to signwhen cc(1, 2)
is close to −1 or 1.

3.2. The CP solutions for R = 2 and R = 3

For ease of presentationwe also present the CP solution for R = 2.We fit the CPmodel using the standard alternating least
squares algorithm.We run the algorithm11 times, 10 timeswith random initial values and one timewith initial values based
on the singular value decompositions of the three matrix unfoldings of the data. Of these 11 runs, we keep the CP solution
with the highest fit percentage. The convergence criterion of the algorithm is set at 1e-9.

For R = 2, each of the 11 runs yields nearly the same solution. The CP fit is 41.96%, and the two components are nearly
orthogonal (cc(1, 2) = 0.002). The weights of the components are g1 = 1.46 and g2 = 1.01, and the components would
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Fig. 2. TV show scores and rating scale loadings for the CP solution with R = 2.

Fig. 3. TV show scores and rating scale loadings for the diverging components in the CP solution with R = 3.

explain 28.46% and 13.59% respectively if they were the only component. In Fig. 2 the TV show scores and the rating scale
loadings are depicted in a one-way plot for the two components. Note that the rating scale plots are unipolar, with the
absolute values of the loadings plotted and the labels indicating negative or positive loadings. As can be seen, the rating
scales and TV shows of the first component correspond to ‘‘Humor’’, while those of the second component correspond to
‘‘Sensitivity’’. This is similar to the CP solution found by Lundy et al. (1989).

In general, when interpreting a CP solution for a three-way array also the third mode (persons in our case) is considered.
However, since we have no additional information on the persons to aid interpretation of the CP components, we only
consider the rating scale and TV show modes. All person loadings in the CP solution are positive. Hence, the components
have the same interpretation for all persons.

Next, we repeat the procedure for R = 3. Each of the 11 runs yields nearly the same solution. The CP fit is 50.76%, and the
congruence coefficients are cc(1, 2) = −0.996, cc(1, 3) = −0.13, and cc(2, 3) = 0.12. The weights of the components are
g1 = 15.23, g2 = 15.39, and g3 = 1.52. Hence, components 1 and 2 are nearly identical up to sign and have large weights.
Also, the number of iterations of the CP algorithm is very large (around 8500). This is a case of two diverging components. The
interpretation of these two components is not clear. In Fig. 3 it can be seen that their TV showscores are nearly identicalwhile
their rating scale loadings are nearly the opposite of each other. The third and nondiverging component has congruence
coefficient 0.93 with the ‘‘Humor’’ component of the R = 2 solution. Hence, it also represents ‘‘Humor’’. The fit of the two
diverging components added together equals 20.11% (if they were the only components). The fit of the third component
equals 24.38% if it was the only component.

To avoid diverging components, we fit the CPmodel with R = 3 under the constraint of orthogonal TV show components.
We denote this model as CPorth(B), to indicate that the columns of B are orthogonal. Lundy et al. (1989) also fit this model.
Each of the 11 runs yields nearly the same solution. The fit percentage is 50.22, where the contribution of each component
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Fig. 4. TV show scores and rating scale loadings for the third component in the CP solution with R = 3 and orthogonal TV show components.

Table 3
Congruence coefficients between the components of the CP solutions with R = 2 and R = 3, and R = 3 with orthogonal TV
shows components.

R = 2 R = 3 R = 3 orth.
‘‘H’’ ‘‘S’’ C.1 C.2 ‘‘H’’ ‘‘H’’ ‘‘S’’ ‘‘V’’

‘‘Humor’’ 1 0.00 −0.15 0.15 0.93 0.96 0.00 0.11
‘‘Sensitivity’’ 1 −0.41 0.46 0.01 0.00 0.94 0.08

Component 1 1 −0.99 −0.13 −0.20 −0.30 0.30
Component 2 1 0.12 0.19 0.36 −0.24
‘‘Humor’’ 1 0.95 0.03 −0.03

‘‘Humor’’ 1 0 0
‘‘Sensitivity’’ 1 0
‘‘Violence’’ 1

is: 27.19%, 13.04%, and 9.99%. The weights of the components are g1 = 1.43, g2 = 0.99, and g3 = 0.87. The interpretation of
the first component is ‘‘Humor’’ and it has congruence coefficient 0.96 with the ‘‘Humor’’ component of the R = 2 solution.
The interpretation of the second component is ‘‘Sensitivity’’ and it has congruence coefficient 0.94 with the ‘‘Sensitivity’’
component of the R = 2 solution. The interpretation of the third component is ‘‘Violence’’, as can be seen in Fig. 4. This is
similar to the CP solution found by Lundy et al. (1989). The orthogonality constraint is rather arbitrary and unintuitive,
especially since ‘‘Sensitivity’’ and ‘‘Violence’’ do not seem uncorrelated. A similar CP solution is obtained for CPorth(A),
i.e., when the columns of the rating scale loadings are orthogonal. The fit of CPorth(A) is 50.02%.

Table 3 shows comparisons between the components of the CP solutions with R = 2 and R = 3, and CPorth(B). As can
be seen, the two diverging components in the R = 3 solution relate to ‘‘Sensitivity’’ and ‘‘Violence’’. In Section 3.4, we find
the CPlimit decomposition of the limit of the CP solution with R = 3 and diverging components. As we will show, CPlimit also
contains the ‘‘Humor’’, ‘‘Sensitivity’’, and ‘‘Violence’’ components, but does not impose the constraint of orthogonality.

3.3. The Tucker solutions with (3, 3,Q ) components

Here, we present the Tucker solutions with (3, 3, 1), (3, 3, 2), and (3, 3, 3) components. We fit the Tucker model using
the alternating least squares algorithm (e.g. Kroonenberg and De Leeuw, 1980)). As for CP, we take the best of 11 runs
and use convergence criterion 1e-9. For rotating an obtained Tucker solution (A, B, C) · G, we try two methods. First, we
use the joint orthomax procedure of Kiers (1998a) such that a balance is found between simplicity in the core array and
the rating scales and TV show matrices. That is, orthonormal SA, SB, SC are found such that in the rotated Tucker solution
(ASA, BSB, CSC ) · ((STA, S

T
B, S

T
C ) · G) the matrices ASA and BSB have simple structure according to the varimax criterion, and

also the rotated core (STA, S
T
B, S

T
C ) · G has simple structure. The ‘standard weights’ of Kiers (1998a) are used to balance

these multiple objectives. Second, we use the Simplimax procedure of Kiers (1998b), in which oblique rotation matrices
SA, SB, SC are found such that the rotated core (STA, S

T
B, S

T
C ) · G has simple structure. As objective, the rotated core should

approximate as close as possible a core with three nonzero entries. Note that the Tucker solutions are such that A, B, C have
orthogonal columns. Hence, the joint orthomax procedure of Kiers (1998a) results in orthogonal rotated components, while
the Simplimax procedure of Kiers (1998b) results in oblique rotated components.
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Table 4
Congruence coefficients between the three large components of the rotated Tucker solutions, the CPlimit and rotated CPlimit solutions, and the CPorth(B)
solution with R = 3 and orthogonal TV show components. The rotations for Tucker are joint orthomax (JOM) and Simplimax (SIM). The rotations for CPlimit
are Prodmin for the rating scales mode, and either Prodmin (rot.1) or Quartimin (rot.2) for the TV shows mode.

Rotation (3, 3, 1) (3, 3, 2) (3, 3, 3) CPorth(B) CPlimit CPlimit rotated
Congr. Fit % Congr. Fit % Congr. Fit % Congr. Fit % Congr. Fit % Rotation Congr. Fit %

‘‘Humor’’ JOM 0.97 27.22 0.97 28.00 0.97 28.29 1 27.19 0.95 24.37 rot.1 0.95 24.37
SIM 0.91 27.54 0.93 24.82 0.94 26.38 rot.2 0.95 24.37

‘‘Sensitivity’’ JOM 0.83 10.38 0.84 10.43 0.84 10.30 1 13.04 0.81 10.75 rot.1 0.83 11.05
SIM 0.82 11.82 0.69 13.64 0.74 11.66 rot.2 0.83 11.05

‘‘Violence’’ JOM 0.84 9.01 0.80 8.68 0.79 8.70 1 9.99 0.86 7.62 rot.1 0.83 8.59
SIM 0.69 8.96 0.62 4.13 0.54 6.65 rot.2 0.88 7.07

Large terms JOM – 46.61 – 47.11 – 47.29 – 50.22 – 49.32 rot.1 – 48.08
SIM – 48.32 – 48.24 – 48.20 rot.2 – 49.09

total – 48.32 – 50.20 – 51.16 – 50.22 – 50.76 – 50.76

In all three Tucker solutions, there are only three large terms after rotation. The three large terms are of the form

g1 (a1 ◦ b1 ◦ c1) + g2 (a2 ◦ b2 ◦ c1) + g3 (a3 ◦ b3 ◦ c1). (13)

Hence, they share the same person loadings vector c1 (which contains only positive entries). Each of the terms is large in the
sense that theweights g1, g2, g3 are large inmagnitude, and in the sense that the explained variance due to each term is large.
For orthogonal components, the explained variances of all terms in the decomposition add up to the total explained variance
(i.e., the fit percentage). In Table 4 the fit percentages of the large terms and the remaining terms are given for all rotated
Tucker solutions. Also, the congruence coefficients between the large terms and the components of the CPorth(B) solution
are given. As can be seen, when using the joint orthomax rotation procedure we find about the same ‘‘Humor’’, ‘‘Sensitivity’’,
and ‘‘Violence’’ components as in the CPorth(B) solution. When using the Simplimax rotation procedure, however, the
‘‘Sensitivity’’ and ‘‘Violence’’ components are (much) less clearly present. There is no clear alternative interpretation of the
‘‘Violence’’ component for the three Simplimax rotated Tucker solutions. For all rotated Tucker solutions, the joint fit of the
three large terms is smaller than the fit of the CPorth(B) solution. When using the joint orthomax rotation procedure, the
Tucker components are orthogonal, which is not intuitive for ‘‘Sensitivity’’ and ‘‘Violence’’. When using Simplimax, oblique
components are obtained, but (at least) one large component has no clear interpretation.

Apart from the three large terms, the rotated Tucker solutions contain a lot of small terms that are hardly interesting for
interpretation. Also, the person loading vectors other than c1 in (13) contain both positive and negative entries. This implies
that the interpretation of most small terms may differ for different persons.

3.4. The CPlimit decomposition for R = 3

Here, we apply the method of Stegeman (2012, 2013a) to the CP solution with R = 3 and featuring two diverging
components. As explained in Section 2, we fit a CPlimit decomposition of the form (9) to the data Z. The first three terms in
(9) are the limit of the two diverging components and the fourth term is the limit of the nondiverging ‘‘Humor’’ component.
Initial values for the CPlimit decomposition are obtained from the CP solutionwith R = 3 (for details see Stegeman, 2012).We
fit the CPlimit decomposition to Z using the alternating least squares algorithm of Kiers and Smilde (1998) with convergence
criterion 1e-9. The vectors sr , tr ,ur are scaled analogous to the columns of A, B, C in the CP solutions.

The number of iterations needed is only 79. The fit percentage of the CPlimit decomposition is 50.7571. For the CP solution
with R = 3 this is 50.7569%, indicating that the limit point X is indeed a little closer to Z than the solution array Y(n) of the
CP solution. For the four terms in (9) the fit percentages are: 7.62, 10.75, 1.55, and 24.37 (when each of them was the only
term); see Table 4. The weights are g111 = 0.99, g221 = 0.95, g122 = −0.33, and g3 = 1.52. The last term is very close to
the nondiverging ‘‘Humor’’ component of the CP solution. For the interpretation of the first three terms, we compare them
to the CPorth(B) solution (see Table 4). We find that the first term in (9) has congruence coefficient 0.86 with the ‘‘Violence’’
component. Hence, s1 and t1 relate to ‘‘Violent’’ rating scales and TV shows. The second term has congruence coefficient
0.81 with the ‘‘Sensitivity’’ component. Hence, s2 and t2 relate to ‘‘Sensitive’’ rating scales and TV shows. Therefore, the
small interaction term (s1 ◦ t2 ◦ u2) relates ‘‘Violent’’ rating scales to ‘‘Sensitive’’ TV shows. Its person loadings vector u2
contains both positive and negative entries. Hence, its interpretation differs for different persons (if it is of interest at all).

The congruence coefficients between the four terms in (9) are all smaller than 0.15 in magnitude. Hence, all
nasty properties of the CP solution with diverging components have vanished. Instead, we have a nondiverging CPlimit
decomposition of the limit point that is easy to obtain. It contains the ‘‘Humor’’, ‘‘Sensitivity’’, and ‘‘Violence’’ components
that are also in the orthogonally rotated Tucker solutions and the CPorth(B) solution. However, now the components are
oblique, which is more intuitive. Also, we have only one small term and not many as in the Tucker solutions. Moreover, the
fit of the three large terms together is 49.32% (see Table 4), which is larger than in the Tucker solutions and only slightly
smaller than the fit of the CP solution with orthogonal TV show components.



212 A. Stegeman / Computational Statistics and Data Analysis 75 (2014) 203–216

Contrary to CP, there is some rotational freedom in CPlimit. This will be discussed in detail in Section 4. The rotational
freedom implies that, after fixing the scaling and permutation ambiguities, two obtained (unrotated) CPlimit solutions with
identical fitted model arrays Z − E may differ when different starting values are used. Here, we obtained starting values
from the CP solution with R = 3 and diverging components. However, as we will see in Section 4, fixing the rotational
freedom with standard rotation criteria does not change the conclusions about the CPlimit solutions (also see Table 4).

As can be seen in Table 2, the Tucker solutions, the CPorth(B) solution, and the CPlimit solution have fit percentages that
are close together. Also, when comparing the fitted model arrays (i.e., Z − E ), we find that fit percentages of one model
array with respect to another are larger than 96% except for the (3, 3, 1) Tucker solution, which has fit percentages larger
than 93%. Given the fact that these models fit nearly equally well, the choice of a suitable decomposition for the TV-ratings
data boils down to the number of terms in the model, the joint fit of the three main components, and the reasonability of
the assumptions made.

4. Uniqueness of the CPlimit decomposition

Here, we have a closer look at the uniqueness properties of the CPlimit decomposition (9). We consider a general
CPlimit decomposition that is the limit of a CP sequence Y(n) featuring one or more groups of two diverging components.
As explained in Section 2, Stegeman (2012) shows that the decomposition of the limit point X is of the form X =m

j=1(Sj, Tj,Uj) · Gj, where Gj is either 2 × 2 × 2 and equal to (7) (for the limit of a group of two diverging components)
or 1 × 1 × 1 and nonzero (for the limit of a nondiverging component). Let an alternative CPlimit decomposition be given
by X =

m
j=1(S̄j, T̄j, Ūj) · Hj, where the sizes of the Hj match those of the Gj up to a permutation of the summands.

The CPlimit decomposition is called essentially unique if it follows that S̄j = Sπ(j)Lπ(j), T̄j = Tπ(j)Mπ(j), Ūj = Uπ(j)Nπ(j), and
Hj = (L−1

π(j),M
−1
π(j),N

−1
π(j))·Gπ(j), for nonsingularmatrices Lπ(j),Mπ(j),Nπ(j), and a permutationπ of (1, . . . ,m). Hence, the only

existing ambiguities are nonsingular transformations between the matrices Sj, Tj, Uj and the arrays Gj, and a permutation of
the summands. Decompositions of this type (without zero restrictions on Gj) are known as decompositions in block terms,
and were introduced by De Lathauwer (2008).

Stegeman (2012) has shown that, under the conditions stated above, the ambiguities in the CPlimit decomposition of
X are those under essential uniqueness, and those of the form (Lj,Mj,Nj) · Hj = Gj, where Gj and Hj are of the form
(7). This implies that the terms (Sj, Tj,Uj) · Gj remain separated in alternative decompositions. Hence, the limit points Xj
of the groups of two diverging components and of the nondiverging components are unique. In this section, we consider
the transformations (L,M,N) · H = G, with G and H of the form (7). For ease of presentation, we drop the subscript j
and consider the decomposition (S, T,U) · G with G of the form (7). Our analysis below sharpens the uniqueness result of
Stegeman (2012) and is relevant for the interpretation of the CPlimit decomposition of X. Let

L =


l1 l2
l3 l4


, M =


m1 m2
m3 m4


, N =


n1 n2
n3 n4


. (14)

In the decomposition (S, T,U) · G = (S, T,U) · ((L,M,N) · H) = (SL, TM,UN) · H , we require L,M,N to have columns of
length 1 to fix the scaling ambiguity. We have the following result.

Lemma 4.1. Let (L,M,N) · H = G, with G and H of the form (7) and L,M,N nonsingular with columns of length 1. Then

L =


1 l2
0 g221/h221


, M =


g111/h111 0

m3 1


, N =


1 n2
0 g122/h122


, (15)

with

l22 + (g221/h221)
2

= (g111/h111)
2
+ m2

3 = n2
2 + (g122/h122)

2
= 1, (16)

h111 m3 + h221 l2 + h122 n2 = 0. (17)

Proof. The equations for the eight entries of (L,M,N) · H = G are as follows:

n1 (h111l1m1 + h221l2m2) + n2 (h122l1m2) = g111, (18)
n1 (h111l3m1 + h221l4m2) + n2 (h122l3m2) = 0, (19)
n1 (h111l1m3 + h221l2m4) + n2 (h122l1m4) = 0, (20)
n1 (h111l3m3 + h221l4m4) + n2 (h122l3m4) = g221, (21)
n3 (h111l1m1 + h221l2m2) + n4 (h122l1m2) = 0, (22)
n3 (h111l3m1 + h221l4m2) + n4 (h122l3m2) = 0, (23)
n3 (h111l1m3 + h221l2m4) + n4 (h122l1m4) = g122, (24)
n3 (h111l3m3 + h221l4m4) + n4 (h122l3m4) = 0. (25)
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Since n3 = n4 = 0 is not allowed as a solution (N must be nonsingular), Eqs. (22), (23) and (25) in (n3, n4) must be
proportional in their coefficients. Proportionality of (22) and (23) is equivalent to (l2l3 − l1l4)m2

2 = 0. Hence,− det(L)m2
2 =

0, which implies m2 = 0. Proportionality of (23) and (25) is equivalent to (m1m4 − m2m3) l23 = 0. Hence, det(M) l23 = 0,
which implies l3 = 0.

Substituting m2 = 0 in (22) yields n3 (h111l1m1) = 0. Since l3 = m2 = 0, setting either l1 = 0 or m1 = 0 violates the
nonsingularity of L andM, respectively. Hence, we obtain n3 = 0. It can be verified that Eqs. (19), (22), (23) and (25) are now
satisfied.

Since the columns of L,M,N have length 1, it follows that l1 = m4 = n1 = 1. Eq. (18) then yieldsm1 = g111/h111, Eq. (21)
yields l4 = g221/h221, and Eq. (24) yields n4 = g222/h222. Eq. (16) follows from the fact that L,M,N have length-1 columns.
Finally, Eq. (20) is equal to (17). This completes the proof. �

An example of L,M,N for which (L,M,N) · H = G is

L =


1 −1/

√
2

0 1/
√
2


, M =


1/

√
2 0

−1/
√
2 1


, N =


1 2/

√
5

0 1/
√
5


, (26)

with g111 = g221 = g122 = 1, h111 = h221 =
√
2, and h122 =

√
5.

Next, we show that for given G, fixing two of l2,m3, n2 will fix all variables satisfying (16) and (17). Without loss of
generality, we assume l2 and m3 are fixed. Then h221 and h111 follow from (16). Next, n2 and h122 must be found such that
n2
2 + (g122/h122)

2
= 1 and (17) hold. This is done as follows. Eq. (17) implies h122n2 = −(h111m3 + h221l2). The value of h122

(up to sign) then follows from (h122n2)
2

+ g2
122 = h2

122. Finally, n2 follows (up to sign) from the values of h122n2 and h122.
Hence, for any l2,m3 ∈ (−1, 1) the transformation (15) is fixed (up to sign).

Next, we consider the implications of such transformations for the interpretation of the CPlimit decomposition of X in
Section 3.4. Let S = [s1 s2], T = [t1 t2], and U = [u1 u2]. Suppose we have L,M,N as in (15) and H that satisfy
(L,M,N) · H = G, for G as in (7). Hence, the alternative CPlimit decomposition to (9) is (SL,TM,UN) · H + g3 (s3 ◦ t3 ◦ u3).
Recall that s1 and t1 relate to ‘‘Violent’’ rating scales and TV shows, and s2 and t2 relate to ‘‘Sensitive’’ rating scales and TV
shows. Since l3 = 0 it follows that the first column ofSL still relates to ‘‘Violent’’ rating scales, while the second column ofSL is a mixture of ‘‘Violent’’ and ‘‘Sensitive’’ rating scales. Since m2 = 0 it follows that the second column ofTM still relates
to ‘‘Sensitive’’ TV shows, while the first column ofTM is a mixture of ‘‘Violent’’ and ‘‘Sensitive’’ TV shows. Hence, also in the
alternative CPlimit decomposition the interpretation involves ‘‘Humor’’, ‘‘Violence’’ and ‘‘Sensitivity’’. However, the last two
concepts may be mixed together.

Suitable linear combinations of ‘‘Sensitive’’ and ‘‘Violent’’ rating scales and TV shows (fixing l2 andm3)may be determined
as follows. For the rating scales loading matrix S = [s1 s2 s3], we have fixed s1 and s3, while the second column may be a
linear combination α1 s1 + α2 s2, with α2

1 + α2
2 = 1. As a suitable criterion to determine α1 and α2 we propose to consider

row complexity of the resulting Srot = [s1 α1s1 +α2s2 s3]. We suggest to minimize one of the following two criteria for row
complexity of an p × r matrix Λ:

Prodmin : f (Λ) =

p
i=1

r
j=1

λ2
ij, (27)

Quartimin : f (Λ) =

p
i=1

r
j=1

r
k≠j

λ2
ijλ

2
ik. (28)

Criterion (27) was introduced by Thurstone (1935) and we refer to it as Prodmin. It is small when each row contains at least
one entry close to zero. Criterion (28) is called Quartimin and was introduced by Carroll (1953). It is small when each row
has at most one large (squared) entry. For more background on complexity criteria, we refer to Browne (2001).

The bipolar rating scales for the TV shows imply that components may have large loadings for the same rating scale yet
still differ in interpretation. Indeed, the signs of the loadings may be opposite. For example, this is true for the ‘‘Sensitive’’
and ‘‘Violent’’ components and rating scale 8 on ‘‘Violent . . . Peaceful’’. Hence, for the row complexity of the transformed
rating scale loadings in Srot, we use the Prodmin criterion (27). For the transformed TV show components matrix Trot =

[β1t1 + β2t2 t2 t3], with β2
1 + β2

2 = 1, we try both the Prodmin and the Quartimin row complexity criteria.
The results are as follows. For the rating scales, we obtain α1 = −0.19 and α2 = 0.98. Hence, the linear combination is

rather close to the original column s2. For the TV show components and the Prodmin criterion, we obtain β1 = 0.99 and
β2 = −0.11. The corresponding H has h111 = 0.99, h221 = 1.01, and h122 = −0.45. For the Quartimin criterion, β1 is very
close to 1 and β2 = 0.05. We have h111 = 0.99, h221 = 1.01, h122 = −0.36. Hence, also here the linear combinations are
close to the original column t1. The three large terms of the rotated CPlimit decompositions still have the same interpretation;
see Table 4. The fit of the large terms together is 48.08%when using Prodmin for the TV showsmode, and 49.09%when using
Quartimin. This is only slightly less than for the original CPlimit decomposition.

Note that after computing L,M,N andH , we rescaled the rotated CPlimit such that column sum-of-squares are 16 for Srot,
15 for Trot, and 4 for the rotated Urot. This is the same scaling as in the CP models.
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Table 5
Best-fitting core array for the CP solution with R = 3 and orthogonal TV show components.
Interaction weights larger than 0.2 in magnitude are in boldfont.

Person loadings 1

‘‘H’’ shows ‘‘S’’ shows ‘‘V’’ shows
‘‘Humor’’ scales 0.96 −0.06 −0.08
‘‘Sensitive’’ scales 0.02 −0.04 −0.12
‘‘Violent’’ scales 0.10 0.30 0.04

Person loadings 2

‘‘H’’ shows ‘‘S’’ shows ‘‘V’’ shows
‘‘Humor’’ scales −0.05 0.22 −0.09
‘‘Sensitive’’ scales 0.02 1.03 0.02
‘‘Violent’’ scales 0.14 −0.23 0.03

Person loadings 3

‘‘H’’ shows ‘‘S’’ shows ‘‘V’’ shows
‘‘Humor’’ scales 0.13 −0.16 0.21
‘‘Sensitive’’ scales −0.06 0.03 0.16
‘‘Violent’’ scales −0.34 −0.21 0.90

The original CPlimit was obtained with initial values from CP, and has smaller g122 = −0.33 than the h122 after rotation.
Also, the joint explained variance of the three large terms is larger. An explanation for this may be the following. For the
TV-ratings dataset, the number of personmode components does not matter much in terms of fit (see Table 2). On the other
hand, the fit increases significantly when the numbers of components in the rating scales and TV showsmodes are increased
simultaneously. Hence, for initial values obtained from CP, terms one, two, and four of the CPlimit decomposition (9) mimic
CP and their joint fit will be close to the CP fit. They contain no interaction term between rating scales and TV shows. The
third term does contain such an interaction and, hence, it will be small.

5. Discussion

In this paper, we have demonstrated a novel method of Stegeman (2012, 2013a) to overcome the problem of non-
existence of a best-fitting CP model for a three-way array Z. The CP sequence Y(n) featuring diverging components is used
to determine the form of the CPlimit decomposition of its limit point X, where CPlimit contains interaction terms. Next, this
CPlimit decomposition is fitted to Z using initial values obtained from the CP decomposition of Y(n). For the TV-ratings data,
we showed that the CPlimit decomposition ofX findsmain componentswith the same interpretation as orthogonally rotated
Tucker models or CP with an orthogonality constraint. However, CPlimit has higher joint fit of the main components than
Tucker models, contains only one small interaction term, and does not impose the unnatural constraint of orthogonality.
When there are only groups of two diverging components, as with the TV-ratings data, the CPlimit decomposition is the
smallest nondiverging Tucker decomposition with a constrained R × R × R core; see Section 2.

We also studied the uniqueness properties of the CPlimit decomposition of X. Although there is some rotational freedom
for the ‘‘Violence’’ and ‘‘Sensitivity’’ components, fixing this by standard rotation criteria did not change the interpretation
of themain components, and their joint fit decreased only slightly. Moreover, any rotated CPlimit decomposition still features
‘‘Violence’’ and ‘‘Sensitivity’’ components or mixtures of them.

For the TV-ratings data, CPlimit provides a summary that is easier to interpret,more efficient, andmore intuitive compared
to Tucker and CP with orthogonal TV show components. Fitting CPlimit is easy and fast, by using an alternating least squares
algorithm. Apart from imposing constraints in CP, this is the first solution for diverging CP components that is generally
applicable. Further research is necessary to assess the practical usefulness of CPlimit for other three-way datasets featuring
diverging CP components.

Lundy et al. (1989) are also interested in the size of possible interaction terms between the CP components. For the
solution with R = 3 and orthogonal TV show components (A, B, C), they compute the best fitting 3 × 3 × 3 core array
G such that the fit of Z ≈ (A, B, C) · G is maximized. This so-called PFCORE procedure uses the interaction sizes in G to
interpret the solution. Lundy et al. (1989) obtain large interaction weights in G for ‘‘Humor’’ rating scales and ‘‘Sensitive’’ TV
shows (negative for person loadings c1 and positive for c3) and ‘‘Violent’’ TV shows (positive for c1 and negative for c3). They
conclude that these interaction terms show differences in the sense of humor among the raters. Raters with high c1 loading
find ‘‘Violent’’ TV shows funny and ‘‘Sensitive’’ TV shows not, while the reverse is true for raters with high c3 loading.

However, our best-fitting core array G is rather different from Lundy et al. (1989); see Table 5. The interaction weights
are not as large (Lundy et al. find two weights of 0.67 and 0.49magnitude) and the larger weights are not in the same place.
Hence, the PFCOREmethod does not appear to be robust. Moreover, this approach does not acknowledge the fact that the CP
sequence featuring diverging components is converging to a CPlimit decomposition with specific interaction terms as proven
in Stegeman (2012, 2013a).

In general, our analysis and application are in line with Harshman (2004) who states that diverging CP components occur
when ‘‘CP is trying tomodel Tucker variation’’. However, the results of Stegeman (2012, 2013a) enable us to obtain the exact
form of the CPlimit decomposition, that may be seen as a Tucker decomposition with a lot of weights grpq set to zero.
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Matlab codes are available online for finding the correct form of CPlimit, obtaining initial values, and fitting it to a dataset
that yields diverging CP components; see http://www.gmw.rug.nl/~stegeman.
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